Types of Roofs

Light roof is composition shingles or wood shingles. Heavy roof is clay tile or cement tile.

One Story Building Weights

Wood siding, light roof, sheetrock walls 39 pounds per square foot of foundation footprint.
Wood siding,light roof, plaster walls: 49 pounds per square foot of foundation footprint.
Wood siding, heavy roof, plaster walls : 58 pounds per square foot of foundation footprint.
Stucco siding, light roof, plaster walls: 50 pounds per square foot of foundation footprint.
Stucco siding, heavy roof, plaster walls: 65 pounds per square foot of foundation footprint. Two Story Building Weights

Wood siding, light roof, sheetrock walls: 66 pounds per square foot of foundation footprint.
Wood siding, ight roof, plaster walls: 84 pounds per square foot of foundation footprint.
Wood siding, heavy roof, plaster walls: 92 pounds per square foot of foundation footprint.
Stucco siding, light roof, plaster walls: 72 pounds per square foot of foundation footprint.
Stucco siding, heavy roof, plaster walls: 98 pounds per square foot of foundation footprint.

Appendix A

Determination of house weights based on calculations found in Plan Set A's

SUBSTANTIATING DATA FOR CRIPPLE WALL and SILL BOLTING SEISMIC RETROFIT of ONE \& TWO FAMILY DWELLINGS

4/21/04

These weights are the engineering basis of Plan Set A. The building weights determined by Mr. Russell were for 4 cases of buildings. A fifth case, Case D) Heavy roofing with wood sheathing or board finish, has been added using Mr. Russell's calculations because this configuration is common in Berkeley. All page citations are from Mr. Russell's work mentioned above.

The cases are as follows:

Case A) Lightweight roofing (5 psf) of wood shake, wood shingle, or composition shingle, exterior wood sheathing and $1 / 2$ " gypsum wallboard interior finish. :

Case B) Lightweight roofing, (5 psf) of wood shake, wood shingle, or composition shingle, exterior wood sheathing, and gypsum lath and plaster interior finish.

Case C) Lightweight roofing (5 psf) of wood shake, wood shingle, or composition shingle, cement plaster (stucco) exterior finish, and gypsum lath and plaster interior finish.

Case D) Heavy roofing (11 psf) of concrete or clay tile, exterior wood sheathing or board finish, and gypsum lath and plaster interior finish.

Case E) Heavy roofing (11 psf) of concrete or clay tile, cement plaster (stucco) exterior finish, and gypsum lath and plaster interior finish.

Case A Weight for 30' x 40’ One Story House (1,200 Sq. Ft.) Page 10

Dead loads (W) tributary to cripple wall level:
Roof/Ceiling: 11 psf (34' x 44') = 16.456 kips

First floor: 7 psf (30 x 40') = 8.4 kips

Exterior Walls:
$1^{\text {st }}$ Story wall: $\quad 8 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=8.96 \mathrm{kips}$
Gable end walls: $\quad 5 \mathrm{psf}\left(5 ' \times 30^{\prime}\right) 2 / 2=\quad 0.75$ kips
Cripple walls 6 psf (2') $\left(30^{\prime} \times 2+40 ' \times 2\right)=1.68 \mathrm{kips}$ 11.39 kips

Interior walls: $8 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \mathrm{x} 3+40^{\prime} \mathrm{x} 2\right)=10.88 \mathrm{kips}$
Sum $\mathrm{W}=16.456+8.4+11.39+10.88=47.126$ kips

47.126kips/1200sf=39.27psf for a 1200sf one story Case A house.

Weight per square foot=-39 pounds

Case A- Weight for $30 \mathrm{ft} \times 30 \mathrm{ft}$ Two Story House (1,800 Sq. Ft.) P 42,

Dead loads (W) tributary to cripple wall level for 1,800 square feet:
Roof/Ceiling: 11 psf (34' x 34') = 12.716 kips
Second Floor: $9 \mathrm{psf}\left(30^{\prime} \times 30^{\prime}\right)=8.10 \mathrm{kips} \quad$ First floor: $7 \mathrm{psf}\left(30^{\prime} \times 30^{\prime}\right)=6.30 \mathrm{kips}$

Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $8 \mathrm{psf}\left(16^{\prime}\right)\left(30^{\prime} \times 2+30 '\right.$ x 2$)=15.36$ kips
Gable end walls: $\quad 5 \mathrm{psf}\left(5^{\prime} \times 30\right.$ ') $2 / 2=\quad 0.75$ kips
Cripple walls: 6 psf (2') $\left(30^{\prime} \times 2+30 ' \times 2\right)=1.44$ kips
17.55 kips

Interior wall: 8 psf (8') (29' x $\left.5+29^{\prime} \times 3\right)=14.848$ kips
Sum $W=12.72+8.10+6.30+17.55+14.85=59.51 \mathrm{kips}$
59.51kips/1800sf=33.06psf for an 1800sf two story Case A house.

Weight per square foot=-33 pounds

Dead loads (W) tributary to cripple wall level:
Roof/Ceiling: 14 psf (34' x 44') = 20.944 kips
First floor: 7 psf ($\left.30 \times 40^{\prime}\right)=8.4$ kips

Exterior Walls:
$1^{\text {st }}$ Story wall: $\quad 10 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=11.20$ kips
Gable end walls: 5 psf (5' x 30') $2 / 2=\quad 0.75$ kips
Cripple walls $6 \mathrm{psf}\left(2^{\prime}\right)(30 '$ x $2+40 ' \times 2)=1.68$ kips
13.63 kips

Interior walls: 12 psf (8') (30' x $3+40^{\prime}$ x 2$)=16.32$ kips
Sum $\mathrm{W}=20.944+8.4+13.63+16.32=59.294$ kips
59.294kips/1200sf=49.41psf for a one story Case B house.

Weight per square foot=-49 pounds

Case B-Weight for $30 \mathrm{ft} \times 30 \mathrm{ft}$ Two Story House (1,800 Sq. Ft.) P48,
Dead loads (W) tributary to cripple wall level for 1,800 square feet:

Roof/Ceiling: 14psf (34' x 34') = 16.184 kips

Second Floor: 11 psf $\left(30^{\prime} \times 30 '\right)=9.90$ kips \quad First floor: $7 \mathrm{psf}\left(30^{\prime} \times 30\right.$ ' $)=6.30 \mathrm{kips}$
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: 10 psf (16') $(30 '$ x $2+30 '$ x 2$)=19.20$ kips
Gable end walls: $\quad 5 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=\quad 0.75 \mathrm{kips}$
Cripple walls: 6 psf $\left(2^{\prime}\right)\left(30^{\prime} \times 2+30^{\prime} \times 2\right)=1.44$ kips
21.39 kips

Interior wall: 12 psf ($\left.8^{\prime}\right)\left(29^{\prime} \times 5+29^{\prime} \times 3\right)=22.272 \mathrm{kips}$
Sum $W=16.18+9.90+6.30+21.39+22.27=76.05 \mathrm{kips}$
76.05kips $/ 1800=42.25 p s f$ for a Case B Two Story House

Weight per square foot=-42 pounds

Dead loads (W) tributary to cripple wall level:
Roof/Ceiling: 14 psf (34' x 44') = 20.944 kips
First floor: $7 \mathrm{psf}\left(30 \times 40^{\prime}\right)=8.4$ kips

Exterior Walls:
$1^{\text {st }}$ Story wall: $\quad 17 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=19.040$ kips
Deduct for Windows: -7 psf (130 sq. ft.) <-0.91 kips>
Gable end walls: $\quad 12$ psf (5' x 30') $2 / 2=\quad 1.80$ kips
Cripple walls $\quad 13.5$ psf (2') $(30 '$ x $2+40 '$ x 2$)=\underline{3.78} \mathrm{kips}$

Interior walls: 12 psf (8') (30' x $3+40^{\prime}$ x 2$)=16.32$ kips
Sum $\mathrm{W}=20.944+8.4+23.71+16.32=69.374 \mathrm{kips}$
69.374kips/1200=57.81psf or a Case C One Story House

Weight per square foot=-58 pounds

Case C- Weight for $30 \mathrm{ft} x 40$ ft Two Story House (2,400 Sq. Ft.) P52

Assume SD soil with $\mathrm{Ca}=0.44 ; \mathrm{Na}=1.3 ; \mathrm{I}=1.00$; and $\mathrm{R}=5.5$; Conversion to ASD force level: $1 / 1.4$ Seismic V $=0.186 \mathrm{~W}$

Dead loads (W) tributary to cripple wall level for 30×40 two story $=2,400$ square feet:
Roof/Ceiling: 14 psf (34' x 44') = 20.944 kips
Second Floor: 11 psf (30' x 40') = 13.20 kips First floor: $7 \mathrm{psf}\left(30^{\prime} \mathrm{x} 40^{\prime}\right)=8.40 \mathrm{kips}$
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $\quad 17 \mathrm{psf}\left(16^{\prime}\right)\left(30 ' \times 2+40^{\prime} \times 2\right)=38.08 \mathrm{kips}$
Deduct for windows: $\quad-7$ psf (240 sq. ft.) $=\quad<-1.68>$ kips
Gable end walls:
Cripple walls:

$$
12 \text { psf (5' x 30') } 2 / 2=\quad 1.80 \text { kips }
$$

13.5 psf (2') (30' x $2+40 '$ x 2$)=3.78$ kips
41.98 kips

Interior wall: 12 psf (8') (29' x $5+39 '$ x 3$)=25.152$ kips

Sum $\mathrm{W}=20.94+13.2+8.4+41.98+25.15=109.68 \mathrm{kips}$
109.68 kips $/ 2400=45.7$ psf for a Case C Two Story House

Weight per square foot=-46 pounds

Case 3 Weight for 30' x 40’ One Story House (1,200 Sq. Ft.)

Dead loads (W) tributary to cripple wall level:
Roof/Ceiling: 20 psf (34' x 44') = 29.92 kips

First floor: $7 \mathrm{psf}(30 \mathrm{x} 40$ ' $)=8.4$ kips
Exterior Walls:
$1^{\text {st }}$ Story wall: $\quad 8 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime}\right.$ x $2+40^{\prime}$ x 2$)=8.96$ kips
Gable end walls: $\quad 5 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=0.75$ kips
Cripple walls $\quad 6$ psf $\left(2^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=1.68$ kips 11.39 kips

Interior walls: $8 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \times 3+40^{\prime} \times 2\right)=10.88 \mathrm{kips}$
Sum $\mathrm{W}=16.456+8.4+11.39+10.88=60.59 \mathrm{kips}$

60.59kips/1200=50.49 psf for a CaseD One Story House

Weight per square foot=-50 pounds

Case 3 Weight for $30 \mathrm{ft} \times 40 \mathrm{ft}$ Two Story House (2,400 Sq. Ft.)

Assume SD soil with $\mathrm{Ca}=0.44 ; \mathrm{Na}=1.3 ; \mathrm{I}=1.00$; and $\mathrm{R}=5.5$; Conversion to ASD force level: $1 / 1.4$ Seismic V $=0.186 \mathrm{~W}$

Dead loads (W) tributary to cripple wall level for 30×40 two story $=2,400$ square feet:
Roof/Ceiling: 20 psf (34' x 44') = 29.92 kips
Second Floor: 9 psf ($30^{\prime} \mathrm{x} 40^{\prime}$) $=10.80$ kips First floor: $7 \mathrm{psf}\left(30 ' \mathrm{x} 40^{\prime}\right)=8.40$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $8 \mathrm{psf}\left(16^{\prime}\right)\left(30{ }^{\prime} \times 2+40^{\prime} \times 2\right)=17.92$ kips
Gable end walls: $\quad 5 \mathrm{psf}(5 ' \times 30 ') 2 / 2=\quad 0.75 \mathrm{kips}$
Cripple walls: $\quad 6 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=1.68$ kips
20.35 kips

Interior wall: 8 psf (8') (29' x $5+39$ x 3$)=16.768$ kips
Sum $\mathrm{W}=16.46+10.8+8.4+20.35+16.77=86.234$ kips

86.234kips/2400=35.93psf for a Case E Two Story House

Weight per square foot=-36 pounds

Case E Weight for 30’ x 40’ One Story House (1,200 Sq. Ft.) P 58

Dead loads (W) tributary to cripple wall level:
Roof/Ceiling: 20 psf (34' x 44') = 29.92 kips
First floor: 7 psf $(30 \times 40$ ' $)=8.4$ kips
Exterior Walls:
$1^{\text {st }}$ Story wall: $\quad 17 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime}\right.$ x 2$)=19.040$ kips
Deduct for Windows: $\quad-7$ psf (130 sq. ft.) <-0.91 kips>
Gable end walls: $\quad 12$ psf ($5^{\prime} \times 30^{\prime}$) $2 / 2=\quad 1.80$ kips
Cripple walls $\quad 13.5 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=\underline{3.78 \mathrm{kips}}$
23.71 kips

Interior walls: $12 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \mathrm{x} 3+40^{\prime} \mathrm{x} 2\right)=16.32 \mathrm{kips}$
Sum $\mathrm{W}=29.92+8.4+23.71+16.32=78.35$ kips

78.35 kips/1200=65.29psf for a Case D One Story House

Weight per square foot=-65 pounds

Case E-Weight for Two Story House $30 \mathrm{ft} \times 40 \mathrm{ft}(2,400 \mathrm{Sq}$. Ft.) P61

Assume SD soil with $\mathrm{Ca}=0.44 ; \mathrm{Na}=1.3 ; \mathrm{I}=1.00$; and $\mathrm{R}=5.5$; Conversion to ASD force level:
$1 / 1.4$ Seismic V $=0.186 \mathrm{~W}$
Dead loads (W) tributary to cripple wall level for 30×40 two story $=2,400$ square feet:
Roof/Ceiling: 20 psf (34' x 44') = 29.92 kips
Second Floor: 11 psf (30' x 40') = 13.20 kips First floor: $7 \mathrm{psf}\left(30^{\prime} \mathrm{x} 40\right.$ ') $=8.40$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $\quad 17 \mathrm{psf}\left(16^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=38.08$ kips
Deduct for windows: $-7 \mathrm{psf}(240 \mathrm{sq} . \mathrm{ft}$. $)=\quad<-1.68>$ kips
Gable end walls: $\quad 12 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=1.80 \mathrm{kips}$
Cripple walls: $\quad 13.5 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=3.78$ kips
41.98 kips

Interior wall: 12 psf (8') (29' x $5+39$ x 3$)=25.152$ kips
Sum W $=29.92+13.2+8.4+41.98+25.15=118.65$ kips

118.65kips/2400=49.43psf for a Case D Two Story House

Weight per square foot=-49 pounds

